Finite Precision Measurement Nullifies the Kochen-Specker Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Precision Measurement Nullifies the Kochen-specker Theorem

Only finite precision measurements are experimentally reasonable, and they cannot distinguish a dense subset from its closure. We show that the rational vectors, which are dense in S, can be colored so that the contradiction with hidden variable theories provided by Kochen-Specker constructions does not obtain. Thus, in contrast to violation of the Bell inequalities, no quantum-over-classical a...

متن کامل

Non-Contextuality, Finite Precision Measurement and the Kochen-Specker Theorem

Meyer originally raised the question of whether non-contextual hidden variable models can, despite the Kochen-Specker theorem, simulate the predictions of quantum mechanics to within any fixed finite experimental precision (Meyer, D. 1999. Phys. Rev. Lett., 83, 3751-3754). Meyer’s result was extended by Kent (Kent, A. 1999. Phys. Rev. Lett., 83, 37553757). Clifton and Kent later presented const...

متن کامل

Finite Precision Measurement Nullifies Euclid’s Postulates

Following Meyer’s argument [Phys. Rev. Lett. 83, 3751 (1999)] the set of all directions in space is replaced by the dense subset of rational directions. The result conflicts with Euclidean geometry. Meyer’s claim [1] that “finite precision measurement nullifies the KochenSpecker theorem” (that is, makes it irrelevant to physics) and some of its generalizations [2] have caused considerable contr...

متن کامل

Kochen-Specker theorem for eight-dimensional space

A Kochen-Specker contradiction is produced with 36 vectors in a real eight-dimensional Hilbert space. These vectors can be combined into 30 distinct projection operators ( 14 of rank 2, and 16 of rank 1). A state-specific variant of this contradiction requires only 13 vectors, a remarkably low number for eight dimensions. The Kochen-Specker theorem [ l] asserts that, in a Hilbert space with a f...

متن کامل

Kochen-Specker theorem for von Neumann algebras

The Kochen-Specker theorem has been discussed intensely ever since its original proof in 1967. It is one of the central no-go theorems of quantum theory, showing the non-existence of a certain kind of hidden states models. In this paper, we first offer a new, non-combinatorial proof for quantum systems with a type In factor as algebra of observables, including I∞. Afterwards, we give a proof of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 1999

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.83.3751